Tuesday, October 1, 2019

Generations of Computer Essay

The development of the integrated circuit was the hallmark of the third generation of computers. Transistors were miniaturized and placed on silicon chips, called semiconductors, which drastically increased the speed and efficiency of computers. A chip is a small piece of semi conducting material(usually silicon) on which an integrated circuit is embedded. A typical chip is less than  ¼-square inches and can contain millions of electronic components(transistors). Computers consist of many chips placed on electronic boards called printed circuit boards. There are different types of chips. For example, CPU chips (also called microprocessors) contain an entire processing unit, whereas memory chips contain blank memory. Computer chips, both for CPU and memory, are composed of semiconductor materials. Semiconductors make it possible to miniaturize electronic components, such as transistors. Not only does miniaturization mean that the components take up less space, it also means that they are faster and require less energy. Instead of punched cards and printouts, users interacted with third generation computers through keyboards and monitors and interfaced with an operating system, which allowed the device to run many different applications at one time with a central program that monitored the memory. Computers for the first time became accessible to a mass audience because they were smaller and cheaper than their predecessors. Fourth Generation – 1971-Present: Microprocessors The microprocessor brought the fourth generation of computers, as thousands of integrated circuits we rebuilt onto a single silicon chip. A silicon chip that contains a CPU. In the world of personal computers, the terms microprocessor and CPU are used interchangeably. At the heart of all personal computers and most workstations sits a microprocessor. Microprocessors also control the logic of almost all digital devices, from clock radios to fuel-injection systems for automobiles. Three basic characteristics differentiate microprocessors: * Instruction Set: The set of instructions that the microprocessor can execute. * Bandwidth: The number of bits processed in a single instruction. * Clock Speed: Given in megahertz (MHz), the clock speed determines how many instructions per second the processor can execute. In both cases, the higher the value, the more powerful the CPU. For example, a 32-bit microprocessor that runs at 50MHz is more powerful than a 16-bitmicroprocessor that runs at 25MHz. The CPU is the brains of the computer. Sometimes referred to simply as the processor or central processor, the CPU is where most calculations take place. In terms of computing power, the CPU is the most important element of a computer system. On large machines, CPUs require one or more printed circuit boards. On personal computers and small workstations, the CPU is housed in a single chip called a microprocessor. Two typical components of a CPU are: * The arithmetic logic unit (ALU), which performs arithmetic and logical operations. * The control unit, which extracts instructions from memory and decodes and executes them, calling on the ALU when necessary. In 1981 IBM introduced its first computer for the home user, and in 1984 Apple introduced the Macintosh. Microprocessors also moved out of the realm of desktop computers and into many areas of life as more and more everyday products began to use microprocessors. As these small computers became more powerful, they could be linked together to form networks, which eventually led to the development of the Internet. Fourth generation computers also saw the development of GUI’s, the mouse and handheld devices. Fifth Generation – Present and Beyond: Artificial Intelligence Fifth generation computing devices, based on artificial intelligence, are still in development, though there are some applications, such as voice recognition, that are being used today. Artificial Intelligence is the branch of computer science concerned with making computers behave like humans. The term was coined in 1956 by John McCarthy at the Massachusetts Institute of Technology. Artificial intelligence includes: * Games Playing: programming computers to play games such as chess and checkers * Expert Systems: programming computers to make decisions in real-life situations (for example, some expert systems help doctors diagnose diseases based on symptoms) * Natural Language: programming computers to understand natural human languages * Neural Networks: Systems that simulate intelligence by attempting to reproduce the types of physical connections that occur in animal brains * Robotics: programming computers to see and hear and react to other sensory stimuli Currently, no computers exhibit full artificial intelligence (that is, are able to simulate human behavior). The greatest advances have occurred in the field of games playing. The best computer chess programs are now capable of beating humans. In May, 1997, an IBM super-computer called Deep Blue defeated world chess champion Gary Kasparov in a chess match. In the area of robotics, computers are now widely used in assembly plants, but they are capable only of very limited tasks. Robots have great difficulty identifying objects based on appearance or feel, and they still move and handle objects clumsily. Natural-language processing offers the greatest potential rewards because it would allow people to interact with computers without needing any specialized knowledge. You could simply walk up to a computer and talk to it. Unfortunately, programming computers to understand natural languages has proved to be more difficult than originally thought. Some rudimentary translation systems that translate from one human language to another are in existence, but they are not nearly as good as human translators. There are also voice recognition systems that can convert spoken sounds into written words, but they do not understand what they are writing; they simply take dictation. Even these systems are quite limited — you must speak slowly and distinctly. Today, the hottest area of artificial intelligence is neural networks, which are proving successful in a number of disciplines such as voice recognition and artificial intelligence.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.